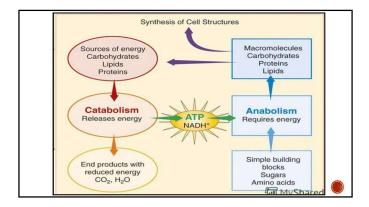
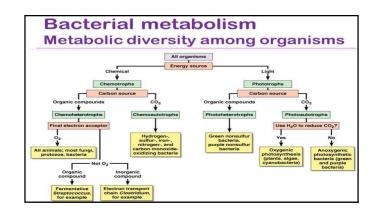
METABOLIC DIVERSITY AMONG MICRO-ORGANISMS

Presented By :-Miss. Ashwini M. Devarshe Assistant Professor RSML Latur.


BACTERIAL METABOLISM

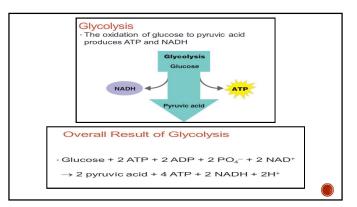
METABOLISM: The sum of the biochemical reactions required for energy generation and the use of energy to synthesize cell material from small molecules in the environment.


 $Metabolism \rightarrow \ Catabolism + anabolism$

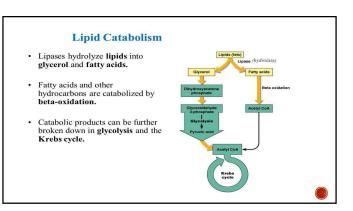
Catabolism :-> Chemical reactions that result in the breakdown of more complex organic molecules into simpler substances Release energy (ATP; stored and used to power anabolic chemical reactions)

Anabolism:→ Chemical reactions in which simpler substances are combined to form more complex molecules Require energy (ATP)

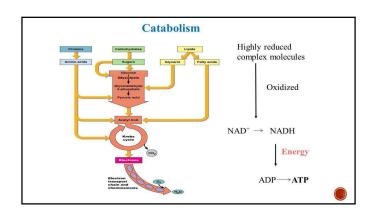
Carbon sources	
Autotrophs	CO ₂ as sole carbon source
Heterotrophs	Organic substances from other organisms
Energy sources	
Phototroph	Light energy
Chemotrophs	Chemical energy source (Organic or Inorganic)
Electron sources	
Lithotrophs	Reduced inorganic substances
Organotrophs	Organic compounds

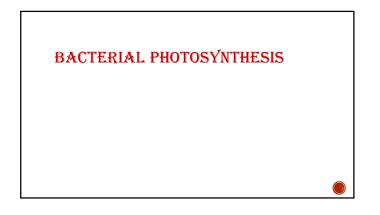


Nutritional Type	Energy Source	Carbon Source	Example
Photoautotroph	Light	CO ₂	Oxygenic: Cyanobacter plants Anoxygenic: Green, purple bacteria
Photoheterotroph	Light	Organic compounds	Green, purple nonsulfu bacteria
Chemoautotroph	Chemical	CO ₂	Iron-oxidizing bacteria
Chemoheterotroph	Chemical	Organic compounds	Fermentative bacteria Animals, protozoa, fungi, bacteria.

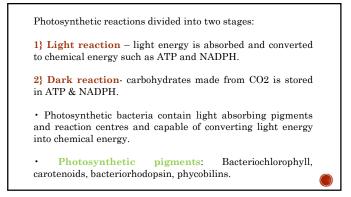

Carbohydrate Catabolism • The breakdown of carbohydrates to release energy • Glycolysis • Krebs cycle • Electron transport chain

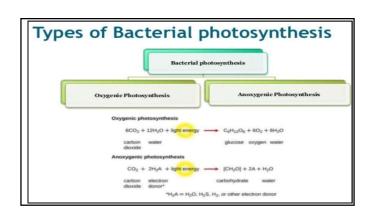
A Summary of Respiration

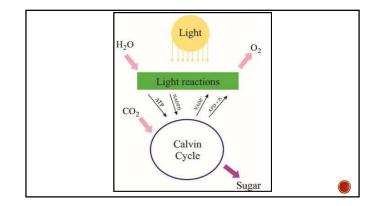

- Aerobic respiration: The final electron acceptor in the electron transport chain is molecular oxygen (O₂).
- Anaerobic respiration: The final electron acceptor in the electron transport chain is not O₂ (rather an inorgainc molecules containing sulfate, nitrate, nitrite, carbonate, etc..).
- Yields less energy than aerobic respiration because only part of the Krebs cycles operates under anaerobic conditions.

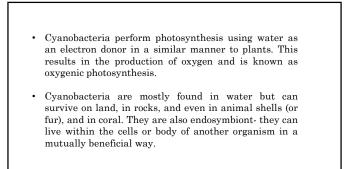


Pathway	Eukaryote	Prokaryote
Glycolysis	Cytoplasm	Cytoplasm
Intermediatestep	Cytoplasm	Cytoplasm
Krebs cycle	Mitochondrial matrix	Cytoplasm
ETC	Mitochondrial inner membrane	Plasma membrane

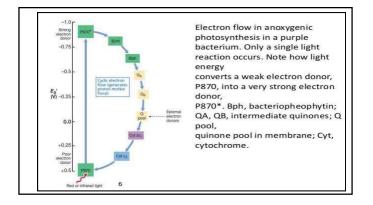


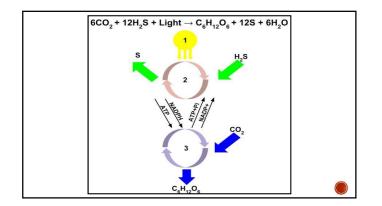

	Protein Catabolism						
Protein	Extracellular proteas		Amino acids				
Deaminati deh	on, decarboxylation, ydrogenation		Organic acid —>	Krebs cycle			
Urea	Urease NI	IH ₃ + CO ₂					
	Test Control						




1. Oxygenic Photosynthesis : \rightarrow

- Oxygenic photosynthetic bacteria are unicellular or multicellular and possess chlorophyll a.
- They perform photosynthesis in a similar manner to plants.
- They contain light-harvesting pigments (such as phycobilins, phycoerythrin), absorb CO2, and release oxygen.
- Eg. Cyanobacteria or Cyanophyta and prochlorophytes .
- The synthesis of carbohydrates results in release of molecular O2 and removal of CO2 from atmoshphere.


• It occurs in lamellae which house thylakoids containing chlorophyll a/b and phycobilisomes pigments to gather light energy.


- This process involves two photosystems (PS):
- PS II- which generates a proton-motive force for making ATP.
- PS I- which generates low potential electrons for reducing power.

2. Anoxygenic Photosynthesis : \rightarrow

- Anoxygenic photosynthetic bacteria consume CO2, light energy to create organic compounds, sulfur or fumarate compounds instead of O2.
- It occurs in purple bacteria, green sulfur bacteria, green gliding bacteria, Filamentous Anoxygenic Phototrophs (FAPs), Phototrophic Acidobacteria, and Phototrophic Heliobacteria.
- It uses bacteriochlorophyll instead of chlorophyll and involves one photosystem (PS I) to generate ATP in "cyclic" manner.

- Purple bacteria can be divided into two main types –
- 1. Chromatiaceae :— which produce sulfur particles inside their cells, and
- 2. Ectothiorhodospiraceae:→ which produce sulphur particles outside their cells.
- They cannot photosynthesize in places that have an abundance of oxygen.
- They are found in either stagnant water or hot sulfuric springs.
- Purple sulfur bacteria use hydrogen sulfide as their reducing agent(instead of using water to photosynthesize), releasing

- Green sulfur bacteria are generally non-motile and occurs in multiple shapes such as spheres, rods, and spirals.
 - They are found in deep ocean and can survive in extreme conditions, like the other types of photosynthetic bacteria.

Applications of Photosynthetic Bacteria

or H2S203.

Water purification, bio-fertilizers, animal feed and bioremediation of chemicals among many others.
They are used in the treatment of polluted water since they can grow and utilize toxic substances such as H2S

